Abstract

A mesh-size insensitive structural stress definition is presented in this paper. The structural stress definition is consistent with elementary structural mechanics theory and provides an effective measure of a stress state that pertains to fatigue behavior of welded joints in the form of both membrane and bending components. Numerical procedures for both solid models and shell or plate element models are presented to demonstrate the mesh-size insensitivity in extracting the structural stress parameter. Conventional finite element models can be directly used with the structural stress calculation as a post-processing procedure. To further illustrate the effectiveness of the present structural stress procedures, a collection of existing weld S-N data for various joint types were processed using the current structural stress procedures. The results strongly suggests that weld classification based S-N curves can be significantly reduced into possibly a single master S-N curve, in which the slope of the S-N curve is determined by the relative composition of the membrane and bending components of the structural stress parameter. The effects of membrane and bending on S-N behaviors can be addressed by introducing an equivalent stress intensity factor based parameter using the structural stress components. Among other things, the two major implications are: (a) structural stresses pertaining to weld fatigue behavior can be consistently calculated in a mesh-insensitive manner regardless of types of finite element models; (b) transferability of weld S-N test data, regardless of welded joint types and loading modes, can be established using the structural stress based parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.