Abstract

Many systems, such as the Internet, social networks, and the power grid, can be represented as graphs. When analyzing graphs, it is often useful to compute scores describing the relative importance or distance between nodes. One example is Personalized PageRank (PPR), which assigns to each node v a vector whose i-th entry describes the importance of the i-th node from the perspective of v. PPR has proven useful in many applications, such as recommending who users should follow on social networks (if this i-th entry is large, v may be interested in following the i-th user). Unfortunately, computing n PPR vectors exactly for a graph of n nodes has complexity O(n^3), which is infeasible for many graphs of interest. In this work, we devise a scheme to estimate all n PPR vectors with bounded l_1 error and complexity O(n c ), where c < 2 depends on the degrees of the graph at hand, the desired error tolerance, and a parameter that defines PPR. This improves upon existing methods, the best of which have complexity O(n 2 łog n) in our setting. Our complexity guarantee holds with high probability, for certain choices of the PPR parameter, and for a certain class of random graphs (roughly speaking, the sparse directed configuration model with heavy-tailed in-degrees); our accuracy guarantee holds with probability 1 and for arbitrary graphs and PPR parameters. The complexity result arises as a consequence of our main (structural) result, which shows that the dimensionality of the set of PPR vectors scales sublinearly in n with high probability, for the same class of random graphs and for a notion of dimensionality similar to matrix rank. It is this coupling of the PPR vectors for the nodes on a common underlying graph that allows for estimating them faster. Hence, at a high level, our scheme is analogous to (but distinct from) low-rank matrix approximation. We also note that our scheme is similar to one that was proposed in [Jeh and Widom 2003] but lacked accuracy and complexity guarantees, so another contribution of our paper is to address this gap in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.