Abstract

Abstract In this study, we present a structural optimization framework to design constant force mechanisms (CFMs) with high energy storage capacity. In the framework, the constant force behavior with a zero preload is defined to be ideal, as this has the maximum energy storage given force and displacement limits. A graph-based topology selection, followed by shape optimization is conducted to select designs with energy storage most similar to the energy of the ideal constant force relation. The obtained CFM designs through this framework has a higher energy similarity index compared to typical designs from literature (0.95 versus 0.90). The constant force mechanisms developed through this study can be further applied in different robot/human–environment interfaces that benefit from both mitigating impact force and increasing energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.