Abstract

We study port-Hamiltonian systems on a family of intervals and characterize all boundary conditions leading to m-accretive realizations of the port-Hamiltonian operator and thus to generators of contractive semigroups. The proofs are based on a structural observation that the port-Hamiltonian operator can be transformed to the derivative on a familiy of reference intervals by suitable congruence relations, allowing for studying the simpler case of a transport equation. Moreover, we provide well-posedness results for associated control problems without assuming any additional regularity of the operators involved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.