Abstract

Compared to the wild-type parental line of S49 mouse lymphoma cells, intact cells of a mutant line (kin.A) are 10-fold less sensititive to biologic effects of exogenous cyclic adenosine 3':5'-monophophosphate (cAMP), such as induction of cAMP phosphodiesterase, cell cycle-specific growth inhibition, and cytolysis. The cAMP-dependent protein kinase (ATP:protein phosphotransferase; EC 2.7.1.37) activity of kin.A cells exhibits an apparent Ka for activation by cAMP 10-fold greater than that of wild type, and is much more resistant to inactivation by heat. These differences between the wild-type and mutant enzymes persist through a high degree of purification, suggesting a structural alteration in the kin.A holoenzyme. Heterologous reconstitution experiments, using separated R and C subunits of the wild-type and kin.A cAMP-dependent kinases, show that the altered cAMP affinity and thermolability are conferred by the R component of the kin.A enzyme. These results are most consistent with a structural mutation in the kin.A gene coding for the R subunit of cAMP-dependent protein kinase. Evidence for a structural mutation helps to define one mechanism of heritable variation in cultured somatic cells. The phenotype produced by the kin.A structural mutation also greatly strengthens the conslusion that cAMP-dependent protein kinase is essential for cAMP regulation of growth and enzyme induction in intact S49 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.