Abstract

Altered vascular smooth muscle cell (VSMC) contractility is both a response to and a driver for impaired arterial function, and the leading experimental technique for quantifying VSMC contraction is traction force microscopy (TFM). TFM involves the complex interaction among several chemical, biological, and mechanical mechanisms, making it difficult to translate TFM results into tissue-scale behavior. Here, a computational model capturing each of the major aspects of the cell traction process is presented. The model incorporates four interacting components: a biochemical signaling network, individual actomyosin fiber bundle contraction, a cytoskeletal network of interconnected fibers, and elastic substrate displacement due to cytoskeletal force. The synthesis of these four components leads to a broad, flexible framework for describing TFM and linking biochemical and biomechanical phenomena on the single-cell level. The model recapitulated available data on VSMCs following biochemical, geometric, and mechanical perturbations. The structural bio-chemo-mechanical model offers a tool to interpret TFM data in new, more mechanistic ways, providing a framework for the evaluation of new biological hypotheses, interpolation of new data, and potential translation from single-cell experiments to multi-scale tissue models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call