Abstract

A heteroassociation of antitumor antibiotic novatrone (NOV) and flavin mononucleotide (FMN) in aqueous solution was studied by one- and two-dimentional 1H NMR spectroscopy (500 MHz) to elucidate the molecular mechanism of the possible combined action of the antibiotic and vitamin. The equilibrium reaction constants, induced proton chemical shifts, and the thermodynamic parameters (deltaH and deltaS) of the NOV and FMN heteroassociation were determined from the concentration and temperature dependences of proton chemical shifts of the aromatic molecules. The most favorable structure of the 1 : 1 NOV-FMN complex was determined by both the method of molecular mechanics (X-PLOR software) and the induced proton chemical shifts of the molecules. An analysis of the results suggests that the NOV-FMN intermolecular complexes are mainly stabilized by stacking interactions of their aromatic chromophores. An additional stabilization is possible due to intermolecular hydrogen bonds. It was concluded that the aromatic molecules of vitamins, in particular, FMN, can form energetically favorable heterocomplexes with aromatic antitumor antibiotics in aqueous solutions, which could result in a modulation of their medical and biological action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call