Abstract

The complexes of Ag + with the peptides MetGly, ProGly, GlyPro, GlyHis and GlyProAla were investigated using hybrid density functional theory at the B3LYP/DZVP level. The silver ion binding free energies at 298 K to each of these peptides was calculated to be 60.8, 52.0, 54.3, 71.2 and 63.3 kcal mol −1, respectively. Structural information and relative free energies are presented for several isomers for each of the five complexes. Each of the global minima found for the five complexes is a charge-solvated ion. An important finding is that the Ag +–ProGly is the only complex where a salt bridge structure is energetically favored occurring at 4.0 kcal mol −1 higher in free energy than the global minimum. The Ag + ion in this salt bridge structure is attached to the carboxylate anion of zwitterionic ProGly in which the terminal amino nitrogen is protonated. For all the other complexes studied, the salt bridge structure occurs at much higher energies. All the dipeptide complexes with Ag +, but one, exhibit a di- or tri-coordinate metal where the sites of attachment are amino and carbonyl groups. However, the highest coordination numbers are not always the global minima due to steric costs. The global minimum of the Ag +–GlyProAla complex is the only structure found in this study where the metal is tetra-coordinated, binding to the terminal amino nitrogen and all three carbonyl oxygen atoms. Silver binding to sulphur and imidazole nitrogen atoms of MetGly and GlyHis, respectively, are present in the three most energetically favored species in each of these cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.