Abstract
We are concerned with a linear mean-square stability analysis of numerical methods applied to systems of stochastic differential equations (SDEs) and, in particular, consider the θ-Maruyama and the θ-Milstein method in this context. We propose an approach, based on the vectorisation of matrices and the Kronecker product, that allows us to deal efficiently with the matrix expressions arising in this analysis and that provides the explicit structure of the stability matrices in the general case of linear systems of SDEs. For a set of simple test SDE systems, incorporating different noise structures but only a few parameters, we apply the general results and provide visual and numerical comparisons of the stability properties of the two methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Numerical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.