Abstract
The development of efficient, stable and low-cost bifunctional oxygen electrocatalysts is critical to the realization of practically viable rechargeable Zn-air batteries. Herein, we report a strongly cooperative spinel nanohybrid as a promising air electrode catalyst for rechargeable Zn-air batteries. Ultrafine sub-10 nm MnFe2O4 crystals are in situ grown on the ultrathin NiCo2O4 nanosheets, leading to a highly effective surface area and a strong synergistic chemical coupling effect. The distinct architecture and complex composition endow an excellent bifunctional oxygen electrocatalytic activity in alkaline condition. The practical rechargeable Zn-air battery with the hybrid electrocatalyst demonstrates a high round-trip efficiency (a low discharge-charge voltage gap of 0.81 V at a reversible current density of 10 mA cm−2) and an outstanding durability, which outperforms the commercial Pt/Ru/C electrocatalyst. The resulting hybrid (MnFe2O4/NiCo2O4) shows great promise as an alternative bifunctional electrocatalyst to the precious metals for the application in Zn-air batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.