Abstract
This paper is devoted to the study of strong convergence in inexact proximal like methods for finding zeroes of maximal monotone operators in Banach spaces. Convergence properties of proximal point methods in Banach spaces can be summarized as follows: if the operator have zeroes then the sequence of iterates is bounded and all its weak accumulation points are solutions. Whether or not the whole sequence converges weakly to a solution and which is the relation of the weak limit with the initial iterate are key questions. We present a hybrid proximal Bregman projection method, allowing for inexact solutions of the proximal subproblems, that guarantees strong convergence of the sequence to the closest solution, in the sense of the Bregman distance, to the initial iterate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.