Abstract

We report on the results of a visual search for galaxy-scale strong gravitational lenses over 650 arcmin2 of HST/ACS imaging in the Extended Groth Strip (EGS). These deep F606W- and F814W-band observations are in the DEEP2-EGS field. In addition to a previously-known Einstein Cross also found by our search (the ''Cross'', HSTJ141735+52264, with z{sub lens} = 0.8106 and a published z{sub source} = 3.40), we identify two new strong galaxy-galaxy lenses with multiple extended arcs. The first, HSTJ141820+52361 (the ''Dewdrop''; z{sub lens} = 0.5798), lenses two distinct extended sources into two pairs of arcs (z{sub source} = 0.9818 by nebular [O{sub II}] emission), while the second, HSTJ141833+52435 (the ''Anchor''; z{sub lens} = 0.4625), produces a single pair of arcs (source redshift not yet known). Four less convincing arc/counter-arc and two-image lens candidates are also found and presented for completeness. All three definite lenses are fit reasonably well by simple singular isothermal ellipsoid models including external shear, giving {chi}{sub {nu}}{sup 2}values close to unity. Using the three-dimensional line-of-sight (LOS) information on galaxies from the DEEP2 data, we calculate the convergence and shear contributions {kappa}{sub los} and {gamma}{sub los} to each lens, assuming singular isothermal sphere halos truncated at 200 h{sup -1} kpc. These are compared against a robust measure of local environment, {delta}{sub 3}, a normalized density that uses the distance to the third nearest neighbor. We find that even strong lenses in demonstrably underdense local environments may be considerably affected by LOS contributions, which in turn, under the adopted assumptions, may be underestimates of the effect of large scale structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.