Abstract
For every beta in (0,infty ), beta ne 1, we prove that a positive measure subset A of the unit square contains a point (x_0,y_0) such that A nontrivially intersects curves y-y_0 = a (x-x_0)^beta for a whole interval Isubseteq (0,infty ) of parameters ain I. A classical Nikodym set counterexample prevents one to take beta =1, which is the case of straight lines. Moreover, for a planar set A of positive density, we show that the interval I can be arbitrarily large on the logarithmic scale. These results can be thought of as Bourgain-style large-set variants of a recent continuous-parameter Sárközy-type theorem by Kuca, Orponen, and Sahlsten.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.