Abstract

A recent international interlaboratory study led by the U.S. National Institute of Standards (NIST) reported CO2 adsorption isotherms measured independently by 11 groups on reference material RM 8852, an ammonium ZSM-5 zeolite. Good reproducibility and high reliability of this experimental data provide a strong test for the ability of atomically detailed models to predict adsorption of CO2 in zeolites. We developed force fields for CO2 in ammonium zeolites based on first-principles calculations and also independently performed experiments with RM 8852 by microcalorimetry. At low pressures good agreement was obtained between predictions and experiments. At high pressures, however, deviations were observed. We show that the charge-balancing cations in the experimental material are the predominant source of the discrepancy between simulation and experiment at high pressures; the experimental sample treatment causes deammoniation. In addition, accounting for a small amount of noncrystalline mesoporosity in the zeolite brings predictions into much better agreement with experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.