Abstract

In transdermal drug delivery system (TDDS) patches, achieving prolonged adhesion, high drug loading, and rapid drug release simultaneously presented a significant challenge. In this study, a PHT-SP-Cu2+ adhesive was synthesized using polyethylene glycol (PEG), hexamethylene diisocyanate (HDI), trimethylolpropane (TMP), and silk protein (SP) as functional monomers which were combined with Cu2+ to improve the adhesion, drug loading, and drug release of the patch. The structure of the adhesion chains and the formation of Cu2+-p-π conjugated network in PHT-SP-Cu2+ were characterized and elucidated using different characterization methods including FT-IR, 13C NMR, XPS, SEM imaging and thermodynamic evaluation. The formulation of pressure-sensitive adhesive (PSA) was optimized through comprehensive research on adhesion, mechanics, rheology, and surface energy. The formulation of 3 wt.% SP and 3 wt.% Cu2+ provided superior adhesion properties compared to commercial standards. Subsequently, the peel strength of PHT-SP-Cu2+ was 7.6 times higher than that of the commercially available adhesive DURO-TAK® 87–4098 in the porcine skin peel test. The adhesion test on human skin confirmed that PHT-SP-Cu2+ could adhere to the human body for more than six days. Moreover, the drug loading, in vitro release test and skin permeation test were investigated using ketoprofen as a model drug, and the results showed that PHT-SP-Cu2+ had the efficacy of improving drug compatibility, promoting drug release and enhancing skin permeation as a TDDS. Among them, the drug loading of PHT-SP-Cu2+ was increased by 6.25-fold compared with PHT, and in the in vivo pharmacokinetic analysis, the AUC was similarly increased by 19.22-fold. The mechanism of α-helix facilitated drug release was demonstrated by Flori-Hawkins interaction parameters, molecular dynamics simulations and FT-IR. Biosafety evaluations highlighted the superior skin cytocompatibility and safety of PHT-SP-Cu2+ for transdermal applications. These results would contribute to the development of TDDS patch adhesives with outstanding adhesion, drug loading and release efficiency. Statement of significanceA new adhesive, PHT-SP-Cu2+, was created for transdermal drug delivery patches. Polyethylene glycol, hexamethylene diisocyanate, trimethylolpropane, silk protein, and Cu2+ were used in synthesis. Characterization techniques confirmed the structure and Cu2+-p-π conjugated networks. Optimal formulation included 3 wt.% SP and 3 wt.% Cu2+, exhibiting superior adhesion. PHT-SP-Cu2+ showed 7.6 times higher peel strength than DURO-TAK® 87–4098 on porcine skin and adhered to human skin for over six days. It demonstrated a 6.25-fold increase in drug loading compared to PHT, with 19.22-fold higher AUC in vivo studies. α-helix facilitated drug release, proven by various analyses. PHT-SP-Cu2+ showed excellent cytocompatibility and safety for transdermal applications. This study contributes to developing efficient TDDS patches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.