Abstract
The unit commitment (UC) problem aims to find an optimal schedule of generating units subject to the demand and operating constraints for an electricity grid. The majority of existing algorithms for the UC problem rely on solving a series of convex relaxations by means of branch-and-bound or cutting-planning methods. In this paper, we develop a strengthened semidefinite program (SDP) for the UC problem by first deriving certain valid quadratic constraints and then relaxing them to linear matrix inequalities. These valid inequalities are obtained by the multiplication of the linear constraints of the UC problem such as the flow constraints of two different lines. The performance of the proposed convex relaxation is evaluated on several instances of the UC problem. For most of the instances, globally optimal integer solutions are obtained by solving a single convex problem. Since the proposed technique leads to a large number of valid quadratic inequalities, an iterative procedure is devised to impose a small number of such valid inequalities. For the cases where the strengthened SDP does give a global integer solution, we incorporate other valid inequalities, including a set of Boolean quadric polytope constraints. The proposed relaxations are extensively tested on various IEEE power systems in simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.