Abstract
In this paper, we study the Node Weighted Steiner Tree Problem (NSP). This problem is a generalization of the Steiner tree problem in the sense that vertex weights are considered. Given an undirected graph, the problem is to find a tree that spans a subset of the vertices and is such that the total edge cost minus the total vertex weight is minimized. We present a new formulation of NSP and derive a Lagrangean bound which used together with a heuristic procedure solves the NSP. Computational results are reported on a large set of test problems and optimality is proven for all the generated instances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.