Abstract

The development of high-performance solid polymer electrolytes is crucial for producing all-solid-state lithium metal batteries with high safety and high energy density. However, the low ionic conductivity of solid polymer electrolytes and their unstable electrolyte/electrode interfaces have hindered their widespread utilization. To address these critical challenges, a strong Lewis acid (aluminum fluoride (AlF3)) with dual functionality is introduced into polyethylene oxide) (PEO)-based polymer electrolyte. The AlF3 facilitates the dissociation of lithium salt, increasing the iontransfer efficiency due to the Lewis acid-base interaction; further the in-situ formation of lithium fluoride-rich interfacial layer is promoted, which suppresses the uneven lithium deposition and continuous undesired reactions between the Li metal and PEO matrix. Benefiting from our rational design, the symmetric Li/Li battery with the modified electrolyte exhibits much longer cycling stability (over 3600 h) than that of the pure PEO/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte (550 h). Furthermore, the all-solid-state LiFePO4 full cell with the composite electrolyte displays a much higher Coulombic efficiency (98.4% after 150 cycles) than that of the electrolyte without the AlF3 additive (63.3% after 150 cycles) at a large voltage window of 2.4–4.2 V, demonstrating the improved interface and cycling stability of solid polymer lithium metal batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.