Abstract

Let $X_1, X_2, \cdots$ be independent, identically distributed, nondegenerate random variables, let $w_k$ be a sequence of positive numbers and for $n = 1,2, \cdots$ let $S_n = \sum^n_{k=1} w_kX_k$ and $W_n = \sum^n_{k=1} w_k$. The weak (strong) law is said to hold for $\{X_k, w_k\}$ if and only if $S_n/W_n$ converges in probability (almost surely) to a constant. Jamison, Orey and Pruitt (1965) (Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 40-44) studied conditions related to these laws of large numbers. In considering the strong law, only distributions with finite first moments are discussed. However, Theorem 2 of this paper shows that a sequence of random variables and a sequence of weights can be chosen so that the strong law holds and so that the random variables have arbitrarily heavy tails. This result also answers some interesting questions concerning the weak law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.