Abstract
In this work, a graph-based approach has been adopted for feature selection in case of high-dimensional data. Feature selection intends to identify an optimal feature subset to solve the given learning problem. In an optimal feature subset, only relevant features are selected as “members” and features that have redundancy are considered as “non-members”. This concept of “membership” and “non-membership” of a feature to an optimal feature subset has been represented by a strong intuitionistic fuzzy graph. The algorithm proposed in this work at first maps the feature set of the data as the vertex set of a strong intuitionistic fuzzy graph. Then the association between features represented as an edge-set is decided by the degree of hesitation between the features. Based on the feature association, the Strong Intuitionistic Fuzzy Feature Association Map (SIFFAM) is developed for the datasets. Then a sub-graph of SIFFAM is derived to identify features with maximal non-redundancy and relevance. Finally, the SIFFAM based feature selection algorithm is applied on very high dimensional datasets having features of the order of thousand. Empirically, the proposed approach SIFFAM based feature selection algorithm is found to be competitive with several benchmark feature selection algorithms in the context of high-dimensional data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.