Abstract

This paper presents the first ‘exact’ solutions to the creeping-flow equations for the transverse motion of a sphere of arbitrary size and position between two plane parallel walls. Previous solutions to this classical Stokes flow problem (Ho & Leal 1974) were limited to a sphere whose diameter is small compared with the distance of the closest approach to either boundary. The accuracy and convergence of the present method of solution are tested by detailed comparison with the exact bipolar co-ordinate solutions of Brenner (1961) for the drag on a sphere translating perpendicular to a single plane wall. The converged series collocation solutions obtained in the presence of two walls show that for the best case where the sphere is equidistant from each boundary the drag on the sphere predicted by Ho & Leal (1974), using a first-order reflexion theory, is 40 per cent below the true value when the walls are spaced two sphere diameters apart and is one order-of-magnitude lower at a spacing of 1.1 diameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.