Abstract

A strong-form meshfree method is proposed for solving plane elastostatic equations of anisotropic functionally graded materials. Any general function may be the grading function and it is changing smoothly from location to location in the material. The proposed method is based on Pascal polynomial basis and multiple-scale technique and it is a genuinely meshfree method since no numerical integrations over domains and meshing processes are required for considered problems. Implementation of the proposed method is straightforward and the method gives very accurate results. Stability of the solutions are examined numerically in occurrence of random noise. Some certain test problems with known exact solutions are solved both on regular and irregular geometries. Acquired solutions by the suggested method are compared with the exact solutions as well as with solutions of some existing numerical techniques in literature, such as boundary element, meshless local Petrov–Galerkin and radial basis function based meshless methods, to show accuracy of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.