Abstract

Strength ductility tradeoff, strain hardenability and in-plane isotropy under tensile loading are big dilemmas in magnesium alloys. In this study, we have fabricated an extruded low alloyed Mg-0.5Zn-0.5Y-0.15Si alloy. Based on bimodal grain size, strong basal texture, Schmidt factor analysis and precipitates (MgZn2, Mg3Zn6Y and Mg3Zn3Y2), the alloy exhibited high mechanical strength, high elongation to fracture, strain hardenability and excellent in-plane tensile isotropy. The underlying deformation mechanisms for excellent symmetric and high yield strength along extruded and transverse directions were synergistic effects of low Schmidt factor values of <a> basal slip due to intense basal texture (c-axes//ND), pre-induce dislocation, grain boundary strengthening and precipitate strengthening. While, the strain hardenability and high elongation to fracture are the combined effect of the interaction of <a> basal and profuse non-basal <c+a> dislocation with precipitates, dislocation pileup at grain boundaries, dislocation pileup on stacking faults and the signature of extension and contraction twinning activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.