Abstract

The 1992 M7.3 Landers earthquake may have played a role in triggering the 1999 M7.1 Hector Mine earthquake as suggested by their close spatial (∼20 km) proximity. Current investigations of triggering by static stress changes produce differing conclusions when small variations in parameter values are employed. Here I test the hypothesis that large‐amplitude dynamic stress changes, induced by the Landers rupture, acted to promote the Hector Mine earthquake. I use a flat layer reflectivity method to model the Landers earthquake displacement seismograms. By requiring agreement between the model seismograms and data, I can constrain the Landers main shock parameters and velocity model. A similar reflectivity method is used to compute the evolution of stress changes. I find a strong positive correlation between the Hector Mine hypocenter and regions of large (>4 MPa) dynamic Coulomb stress changes (peak Δσf(t)) induced by the Landers main shock. A positive correlation is also found with large dynamic normal and shear stress changes. Uncertainties in peak Δσf(t) (1.3 MPa) are only 28% of the median value (4.6 MPa) determined from an extensive set (160) of model parameters. Therefore the correlation with dynamic stresses is robust to a range of Hector Mine main shock parameters, as well as to variations in the friction and Skempton's coefficients used in the calculations. These results imply dynamic stress changes may be an important part of earthquake trigging, such that large‐amplitude stress changes alter the properties of an existing fault in a way that promotes fault failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.