Abstract
A fully general strong converse for channel coding states that when the rate of sending classical information exceeds the capacity of a quantum channel, the probability of correctly decoding goes to zero exponentially in the number of channel uses, even when we allow code states which are entangled across several uses of the channel. Such a statement was previously only known for classical channels and the quantum identity channel. By relating the problem to the additivity of minimum output entropies, we show that a strong converse holds for a large class of channels, including all unital qubit channels, the d-dimensional depolarizing channel and the Werner-Holevo channel. This further justifies the interpretation of the classical capacity as a sharp threshold for information transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.