Abstract

Flexible self-adhesive hydrogel sensors are attracting considerable concerns in recent years. However, creating a self-adhesive hydrogel sensor with excellent mechanical properties remains to be challenging. Herein, a double-sided self-adhesive hydrogel capable of strain sensor with high strength is demonstrated by penetration strategy. The middle poly(acrylic acid)-polyacrylamide/Fe3+ (PAA-PAM/Fe3+ ) tough layer endows the double-sided self-adhesive hydrogel with high mechanical properties, while the bilateral poly[2-(methacryloyloxy) ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide-polyacrylamide (PSBMA-PAM) adhesive layers are used to ensure excellent adhesiveness on diverse substrates. The tough layer of the double-sided self-adhesive hydrogel sensor shows a strong interface bonding force against the adhesive layer. The double-sided self-adhesive hydrogel sensor enables excellent adhesiveness on diverse substrates. More importantly, it can accurately detect different strains and human motions as a self-adhesive hydrogel strain sensor. This work manifests a new route of structural design to develop a self-adhesive hydrogel sensor with excellent mechanical properties that is suitable for a wide range of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call