Abstract

AbstractElectromagnetic interference (EMI) shielding fabrics are crucial in addressing the increasingly serious electromagnetic pollution. To meet wearable requirements, stretchability and thermal comfortability are often desired, but which still are challenging. Herein, a stretchable EMI shielding fabric is fabricated via electrospinning coupled with biaxial pre‐stretching spraying, in which a block stacking wrinkled silver nanowire (AgNW)/Ti3C2Tx MXene network is coated on one side of electrospun thermoplastic polyurethane (TPU)/polydimethylsiloxane (PDMS) fabric. As expected, the wrinkled structure protects conductive network from fracture during stretching process, so as to realize the strain‐invariant electrical conductivity. Thus, the fabric exhibits a stretchable EMI shielding performance of over 40 dB when subjected to 10–50% uniaxial strains or 21–125% biaxial strains. More importantly, the white TPU/PDMS side and the black AgNW/MXene side enable the fabric passive radiative cooling and heating, respectively. The cooling side exhibits high mid‐infrared emissivity (97.5%) and solar reflectance (90%), thus reducing the skin temperature by ≈4.9 °C. The heating side with high solar absorptivity (86.6%) and photothermal effect increased the skin temperature by ≈5 °C. Therefore, the fabirc with stretchable EMI shielding and Janus‐type dual‐mode personal passive thermal management is promising in future wearable products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.