Abstract

The continued decrease in microelectronic feature dimensions has led to a reliance on the focused ion beam (FIB) for site-specific transmission electron microscopy (TEM) specimen preparation. To maximize the capabilities of the FIB, methods must be developed to consistently produce specimens thin enough to generate TEM lattice images. The limiting factor in producing quality TEM specimens by either the traditional or lift-out method is the final thickness of the specimen.The FIB is used to prepare TEM specimens by removing the bulk material that surrounds a desired feature by sputtering with a focused gallium ion beam. Successively lower beam currents are used to sputter away material until an electron transparent membrane (-0.2 μm) containing the desired feature remains. For a 300 keV TEM, lattice imaging of silicon requires additional membrane thinning to less than 0.05 μm.The loss of rigidity during the thinning process makes the membrane highly prone to deformation due to residual stresses, linear expansion, and ion beam interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.