Abstract

Regressive changes in epithelial stem cells underlie mammalian skin aging, but the driving mechanisms are not well understood. Here, we report that mouse skin hair follicle stem cell (HFSC) aging is initiated by their intrinsic upregulation of miR-31, a microRNA that can be induced by physical injury or genotoxic stress and is also strongly upregulated in aged human skin epithelium. Using transgenic and conditional knockout mouse models plus a lineage-tracing technique, we show that miR-31 acts as a key driver of HFSC aging by directly targeting Clock, a core circadian clock gene whose deregulation activates a MAPK/ERK cascade to induce HFSC depletion via transepidermal elimination. Notably, blocking this pathway by either conditional miR-31 ablation or clinically approved MAPK/ERK inhibitors provides safe and effective protection against skin aging, enlightening a promising therapeutic avenue for treating skin aging and other genotoxic stress-induced skin conditions such as radiodermatitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.