Abstract

Quorum sensing (QS) is a means of bacterial communication accomplished by microbe-produced signals and sensory systems. QS systems regulate important population-wide behaviors in bacteria, including secondary metabolite production, swarming motility, and bioluminescence. The human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) utilizes Rgg-SHP QS systems to regulate biofilm formation, protease production, and activation of cryptic competence pathways. Given their reliance on small-molecule signals, QS systems are attractive targets for small-molecule modulators that would then affect gene expression. In this study, a high-throughput luciferase assay was employed to screen an Actinobacteria-derived secondary metabolite (SM) fraction library to identify small molecule inhibitors of Rgg regulation. A metabolite produced by Streptomyces tendae D051 was found to be a general inhibitor of GAS Rgg-mediated QS. Herein, we describe the biological activity of this metabolite as a QS inhibitor. IMPORTANCE Streptococcus pyogenes, a human pathogen known for causing infections such as pharyngitis and necrotizing fasciitis, uses quorum sensing (QS) to regulate social responses in its environment. Previous studies have focused on disrupting QS as a means to control specific bacterial signaling outcomes. In this work, we identified and described the activity of a naturally derived S. pyogenes QS inhibitor. This study demonstrates that the inhibitor affects three separate but similar QS signaling pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.