Abstract

A range of bacteria have been shown to contain collagen-like sequences that form triple-helical structures. Some of these proteins have been shown to form triple-helical motifs that are stable around body temperature without the inclusion of hydroxyproline or other secondary modifications to the protein sequence. This makes these collagen-like proteins particularly suitable for recombinant production as only a single gene product and no additional enzyme needs to be expressed. In the present study, we have examined the cytotoxicity and immunogenicity of the collagen-like domain from Streptococcus pyogenes Scl2 protein. These data show that the purified, recombinant collagen-like protein is not cytotoxic to fibroblasts and does not elicit an immune response in SJL/J and Arc mice. The freeze dried protein can be stabilised by glutaraldehyde cross-linking giving a material that is stable at >37 °C and which supports cell attachment while not causing loss of viability. These data suggest that bacterial collagen-like proteins, which can be modified to include specific functional domains, could be a useful material for medical applications and as a scaffold for tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call