Abstract

In this paper we propose a degradation model to describe the damage-dependent behavior of saturated soft clay under cyclic loading, which is then applied to the analysis of a caisson breakwater. The degree of damage and remolding of soft clay is quantified by a damage parameter related to the accumulated plastic deviatoric strain. Through the correlation between the maximum pore pressure and the undrained strength of soft clay, we obtain a damage-dependent degradation model that employs the post-cyclic undrained strength degradation coefficient in terms of the cyclic stress ratio and the number of cycles. Based on the Tresca yield criterion, the degradation model of undrained strength of soft clay is numerically implemented in the user interface USDFLD of ABAQUS. The performance of this model is verified by a comparison between numerical results (finite element method) and experimental data (cyclic triaxial test). The model is applied to the numerical simulation of a caisson breakwater resting on a partially sand-filled soft clay seabed under cyclic wave loading. The cyclic stress distribution, pore pressure development, and strength degradation of the seabed soil are presented to illustrate the applicability and efficiency of the model in the analysis of the interaction between offshore structures and soft ground.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.