Abstract

Salt content has been proven to be an important influencing factor on the mechanical properties of frozen saline soils, whose strength criterion is different from that of unfrozen saline soils or frozen soils without salts. In this paper, a series of conventional triaxial tests are carried out for frozen saline soils with sodium sulfate at a temperature of –6 °C. A strength criterion of the frozen saline soils, including the influence of salt content, is established by using the generalized nonlinear strength theory. Based on conventional triaxial test results, a modified hydrostatic pressure expression is proposed according to the critical strength function of the modified Cam clay model in the meridian plane. The influence of salt content on the shear strength of the frozen saline soils is investigated according to their freezing temperature curves as well as the formation of salt and ice crystals. The relationship between salt content and friction angle is analyzed. The proposed strength criterion of frozen saline soil is proved to be reliable by extrusion elongation triaxial tests. This criterion can reasonably reflect the major nonlinear strength characteristics of frozen saline soils, including the influences of change in salt content, pressure melting, and ice crushing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.