Abstract
본 논문에서는 모집단이 층으로 구성되어 있고 얻고자 하는 속성이 민감할 때, 덜 민감한 속성 B와 강요응답으로 구성되어 있는 확률장치를 통해 “예”라고 응답한 사람들에게만 민감한 속성 A와 무관한 속성 Y를 포함하고 있는 Greenberg et al.(1969)의 무관질문모형을 사용하도록 하여 모집단이 층화된 경우 층화추정을 위한 층화 조건부 무관질문모형을 제안하였다. 그리고 제안한 층화 조건부 무관질문모형에서 각 층에 표본을 배분할 때 비례배분과 최적배분 문제를 다루었다. 또한 층화 조건부 무관질문모형을 무관한 속성이 미지인 경우 두 개의 독립표본을 이용하는 층화 이표본 조건부 무관질문모형으로 확장하였으며, 제안한 층화 이표본 조건부 무관질문모형의 두 번째 단계에서 사용되는 h층의 표본의 크기에 대한 최적값을 도출하여 최소분산을 구하였다. 마지막으로 층화 조건부 무관질문모형이 층화 무관질문모형과 층화 Carr et al.(1982)의 모형보다 효율적이 되는 조건을 제시하여 일정한 조건하에서 제안한 모형이 기존 모형들보다 효율적임을 보였으며, 제안한 층화 조건부 무관질문모형이 π_h₂값이 작고 π_hy값이 작을수록 층화 Carr et al.(1982)의 모형보다 효율적임을 수치적으로 보였다.We suggest a stratified conditional unrelated question randomized response model to more efficiently estimate a sensitive character A when the population is composed of several strata. In that model, only the respondents who answered “yes” through randomization device which was consisted of a less sensitive character B and a question forcing to answer “yes” respond to our suggested model and we deal with two allocation problems of proportional allocation and optimal one. We expand the suggested model into two sample stratified conditional unrelated question model to cover the case of unknowing unrelated character and deduce minimal variance through optimal sample size of stratum h. Finally, we show that the suggested model is more efficiency than stratified unrelated models and the stratified Carr et al.’s model (1982) under some given conditions, and show numerically that the smaller the values π_h₂ and π_hy, the more efficiency the fit of the model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.