Abstract

A strategy for developing a novel donor–π–acceptor conducting polymeric hole transport material (TTB–TTQ) based on thiophene and benzothiadiazole as an alternative to spiro‐MeOTAD is reported. The resulting polymer is highly soluble in many organic solvents and exhibits excellent film formability. The addition of lithium bis(trifluoromethanesulfonyl) imide salt and tert‐butylpyridine to TTB–TTQ results in a rough film surface with a fibril structure and improved charge transport. A perovskite solar cell with the highest power conversion efficiency (η) yet achieved in such cells, 14.1%, which is 22.6% greater than that of a device employing a spiro‐MeOTAD is demonstrated. This strategy provides a novel approach to developing solar cell materials for efficient perovskite solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call