Abstract
Nonlinear mixed effects models parameters are commonly estimated using maximum likelihood. The properties of these estimators depend on the assumption that residual errors are independent and normally distributed with mean zero and correctly defined variance. Violations of this assumption can cause bias in parameter estimates, invalidate the likelihood ratio test and preclude simulation of real-life like data. The choice of error model is mostly done on a case-by-case basis from a limited set of commonly used models. In this work, two strategies are proposed to extend and unify residual error modeling: a dynamic transform-both-sides approach combined with a power error model (dTBS) capable of handling skewed and/or heteroscedastic residuals, and a t-distributed residual error model allowing for symmetric heavy tails. Ten published pharmacokinetic and pharmacodynamic models as well as stochastic simulation and estimation were used to evaluate the two approaches. dTBS always led to significant improvements in objective function value, with most examples displaying some degree of right-skewness and variances proportional to predictions raised to powers between 0 and 1. The t-distribution led to significant improvement for 5 out of 10 models with degrees of freedom between 3 and 9. Six models were most improved by the t-distribution while four models benefited more from dTBS. Changes in other model parameter estimates were observed. In conclusion, the use of dTBS and/or t-distribution models provides a flexible and easy-to-use framework capable of characterizing all commonly encountered residual error distributions.Electronic supplementary materialThe online version of this article (doi:10.1007/s10928-015-9460-y) contains supplementary material, which is available to authorized users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.