Abstract

In this paper, we present a strategy for fast grasping of unknown objects based on the partial shape information from range sensors for a mobile robot with a parallel-jaw gripper. The proposed method can realize fast grasping of an unknown object without needing complete information of the object or learning from grasping experience. Information regarding the shape of the object is acquired by a 2D range sensor installed on the robot at an inclined angle to the ground. Features for determining the maximal contact area are extracted directly from the partial shape information of the unknown object to determine the candidate grasping points. Note that since the shape and mass are unknown before grasping, a successful and stable grasp cannot be in fact guaranteed. Thus, after performing a grasping trial, the mobile robot uses the 2D range sensor to judge whether the object can be lifted. If a grasping trial fails, the mobile robot will quickly find other candidate grasping points for another trial until a successful and stable grasp is realized. The proposed approach has been tested in experiments, which found that a mobile robot with a parallel-jaw gripper can successfully grasp a wide variety of objects using the proposed algorithm. The results illustrate the validity of the proposed algorithm in term of the grasping time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call