Abstract
Acquiring adequate sensory information and using it to provide motor control are important issues in the process of creating walking robots. The objective of this article is to present control algorithms for the optimization of the walking cycle of an innovative walking robot named "Big Foot". The construction of the robot is based on minimalist design principles-only two motors are used, with which Big Foot can walk and even overcome obstacles. It is equipped with different types of sensors, with some of them providing information necessary for the realization of an optimized walk cycle. We examine two laws of motion-sinusoidal and polynomial-where we compare the results with constant angular velocity motion. Both proposed laws try to find balance between minimizing shock loads and maximizing walking speed for a given motor power. Experimental results are derived with the help of a 3D-printed working prototype of the robot, with the correct realization of the laws of motion being ensured by the use of a PD controller receiving data from motor encoders and tactile sensors. The experimental results validate the proposed laws of motion and the results can be applied to other walking robots with similar construction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.