Abstract

The major histocompatibility complex (MHC) class I related receptor, the neonatal Fc receptor (FcRn), rescues immunoglobulin G (IgG) and albumin from lysosomal degradation by recycling in endothelial cells. FcRn also contributes to passive immunity by mediating transport of IgG from mother to fetus (human) or newborn (rodents), and may translocate IgG over mucosal surfaces. FcRn interacts with the Fc-region of IgG and domain III of albumin with binding at pH 6.0 and release at pH 7.4. Knowledge of these interactions has facilitated design of recombinant proteins with altered serum half-lives and/or altered biodistribution. To generate further research in this field, there is a great need for large amounts of soluble human FcRn (shFcRn) for in vitro interaction studies. In this report, we describe a novel laboratory scale production of functional shFcRn in Escherichia coli ( E. coli) at milligram level. Truncated wild type hFcRn heavy chains were expressed, extracted, purified from inclusion bodies under denaturing non-reducing conditions, and subsequently refolded in the presence of human β 2-microglobulin (hβ 2m). The secondary structural elements of refolded heterodimeric shFcRn were correctly formed as demonstrated by circular dichroism (CD). Furthermore, functional and stringent pH dependent binding to IgG and human serum albumin were demonstrated by ELISA and surface plasmon resonance (SPR). This method may be easily adapted for the expression of large amounts of other FcRn species and MHC class I related molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.