Abstract

Expanding the toolbox of enzymatic reactions accessible to organic chemists is one of the major goals in biocatalysis. Here we describe the development of an acyltransferase variant from Mycobacterium smegmatis in which a strategic Ser/Cys exchange in the catalytic triad dramatically expanded its synthetic capability to yield a biocatalyst able to efficiently catalyse the formation of thioesters and tertiary amides in water. Preparative scale (250 mM) biotransformations were performed starting from different thiols and secondary amines with excellent yields and reactions times, using vinyl esters as acylating agents. The high substrate-to-catalyst ratio and the cofactor independence make this process a sustainable and cost-effective procedure that was successfully applied to the synthesis of acetyl coenzyme A as well as structurally simpler analogues. Computational studies provided insights into the enzymatic selectivity and substrate recognition. Preparative methods for thioester and tertiary amide formation are currently missing in the biocatalysis repertoire. Now, a mutation of serine to cysteine in the catalytic triad of an acyltransferase expands its synthetic capability to generate these compounds while retaining its natural activity towards alcohols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.