Abstract

Good quality crystals of bis thiourea lead chloride (BTLC) have been grown by slow evaporation method from aqueous solution. Orthorhombic structure and Pna21 space group of the crystals have been identified by single crystal X-ray diffraction. Studies on nucleation kinetics of grown BTLC has been carried out from which meta-stable zone width, induction period, free energy change, critical radius, critical number and growth rate have been calculated. The experimental values of interfacial surface energy for the crystal growth process have been compared with theoretical models. Ultra violet transmittance studies resulted in a high transmittance and wide band gap energy suggested the required optical transparency of the crystal. The second harmonic generation (SHG) and phase matching nature of the crystal have been justified by Kurtz-Perry method. The SHG nature of the crystal has been further attested by the higher values of theoretical hyper polarizability. The dielectric nature of the crystals at different temperatures with varying frequencies has been thoroughly studied. The activation energy values of the electrical process have been calculated from ac conductivity study. Solid state parameters including valence electron plasma energy, Penn gap, Fermi energy and polarisability have been unveiled by theoretical approach and correlated with the crystal's SHG efficiency. The values of hardness number, elastic stiffness constant, Meyer's Index, minimum level of indentation load, load dependent constant, fracture toughness, brittleness index and corrected hardness obtained from Vicker's hardness test clearly showed that the BTLC crystal has good mechanical stability required for NLO device fabrication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call