Abstract

According to the recycling model, neutron stars in low-mass X-ray binaries were spun up to millisecond pulsars (MSPs), which indicates that all MSPs in the Galactic plane ought to be harbored in binaries. However, about 20% Galactic field MSPs are found to be solitary. To interpret this problem, we assume that the accreting neutron star in binaries may collapse and become a strange star when it reaches some critical mass limit. Mass loss and a weak kick induced by asymmetric collapse during the phase transition (PT) from neutron star to strange star can result in isolated MSPs. In this work, we use a population-synthesis code to examine the PT model. The simulated results show that a kick velocity of ∼60 km s−1 can produce ∼6 × 103 isolated MSPs and birth rate of ∼6.6 × 10−7 yr−1 in the Galaxy, which is approximately in agreement with predictions from observations. For the purpose of comparisons with future observation, we also give the mass distributions of radio and X-ray binary MSPs, along with the delay time distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call