Abstract

This paper is based on a ductile failure simulation under dynamic loading conditions using finite element (FE) analyses. This paper proposed to implement fracture simulation based on the energy based numerical ductile fracture model. The energy based numerical ductile fracture model is determined to be incremental damage in terms of stress triaxiality (σm/σe) and fracture strain energy (Wf) for dimple fracture from tensile test result with FE analyses technique. Since dynamic loading effect is especially important to assess crack-like defect components, this work propose the integrated model which combines quasi-static with dynamic loading effect. In order to validate energy based numerical ductile fracture model in dynamic loading conditions, this paper compares FE results with test results. The tensile properties for SA 508 Gr. 1a carbon steel were examined over a wide range of strain rates. Five different strain rate tensile test results are fitted by Johnson-Cook model. Also, two types of notch tensile tests were examined under four different strain rates. The energy based numerical ductile fracture model criterion was calibrated by FE analyses with strain rate dependent tensile and notch test results. The calibrated damage model predicts CT test result. Simulated results agree well with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.