Abstract

A failure model for SFRP for FEM simulations is developed to describe the strain rate dependency, the influence of the local fiber orientation and of the stress state on the failure behavior. The material is considered as a continuum while internally calculating the micro-mechanics analytically. The described micro-mechanics are based on experimental observations and on analyzation with numerical studies. In particular the strain rate dependent delamination of fibers and matrix is incorporated in the model. The distortion energy density is defined as the driving value for failure and estimated by the model. This is achieved with the analytic solution by Eshelby for the stress field in the matrix and by introducing an additional phase for the plasticly deformed volume. The validation on characterization specimens as well as component test demonstrates that the influence of strain rate, fiber orientation, and stress state on the failure behavior can be described with only one material parameter, the critical distortion energy density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.