Abstract

The substitution of a pyrrolide ring for one (or more) pyridyl rings within the ubiquitous terpyridine (tpy, A) scaffold results in more open geometries of the pyridine-pyrrolide chelate ligands. DFT calculations (B3LYP-GD3BJ/6-31G**) demonstrate that the more open geometries of the unbound ligands are mismatched with the "pinched in" geometries required to chelate transition metal ions (e.g., Zn2+). The strain which builds within these ligands (Δ EL(strain)) as they bind transition metal ions can be related to changes in a single geometric parameter: the separation between the two terminal N atoms (ρ). This relationship applies more generally to other three-ringed tridentate pincer ligands, including those with different donor groups. The approach was applied to homoleptic iron(II) complexes to investigate the contribution of the steric effects operating within the ligands to the different magnetic properties, including spin crossover (SCO) activities, of these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.