Abstract

In order to manage increasing complexity so called cognitive assistance systems are integrated into assembly systems. On the basis of real-time measurement and analysis of physiological signals, these assistance systems help to coordinate efficient behavior and to prevent states of long lasting detrimental workload and strain. With measurement technology getting smaller, more powerful and wearable it’s possible to collect and analyze personal physiological data in real-time and detect significant changes at the workplace. It is intended to use these data to control a cognitive assistance systems which as a consequence of a monitored detrimental workload leads to adaptive changes in assembly processes and to a reduction of workload. The underlying principle can be a self-actualizing machine learning algorithm. We want to present a theoretical framework to sketch possibilities of such data-controlled, adaptive systems and to describe some obstacles which have to be overcome before they’re ready for use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.