Abstract

We present a simple method for a posteriori removal of a significant fraction of the density-fitting error from the calculated total coupled-cluster energies. The method treats the difference between the exact and density-fitted integrals as a perturbation, and simplified response-like equations allow us to calculate improved amplitudes and the corresponding energy correction. The proposed method is tested at the coupled-cluster singles and doubles level of theory for a diverse set of moderately-sized molecules. On average, error reductions by a factor of approximately 10 and 20 are observed in double-zeta and triple-zeta basis sets, respectively. Similar reductions are observed in calculations of interaction energies of several model complexes. The computational cost of the procedure is small in comparison with the preceding coupled-cluster iterations. The applicability of this method is not limited to the density-fitting approximation; in principle, it can be used in conjunction with an arbitrary decomposition scheme of the electron repulsion integrals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call