Abstract
Closed-loop logistics (forward and reverse logistics) has re- ceived increased attention of late due to customer expectations, greater environmental concerns, and economic aspects. Unlike previous works, which consider single products or single periods in multi-objective func- tion problems, this paper considers a multi-product multi-period closed- loop logistics network with regard to facility expansion as a facility location-allocation problem, which is closer to real-world scenarios. A multi-objective mixed integer nonlinear programming formulation is developed to minimize the total cost, the product delivery time, and the used product collection time. The model is linearized by defining new variables and adding new constraints to the model. Then, to solve the model, a priority-based genetic algorithm is proposed that uses straight encoding and decoding methods. To assess the performance of the above algorithm, its final solutions and CPU times are compared to those generated by an initial priority-based genetic algorithm from the recent literature and the lower bound obtained by CPLEX. The numerical results show that the straight priority-based genetic algo- rithm outperforms the initial priority-based genetic algorithm at least in terms of obtaining a reasonable quality of final solutions for closed- loop logistics problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.