Abstract

Atomistic simulations performed with a family of model potential with tunable hardness have proven to be a great tool for advancing the understanding of wear processes at the asperity level. They have been instrumental in finding a critical length scale, which governs the ductile to brittle transition in adhesive wear, and further helped in the understanding of the relation between tangential work and wear rate or how self-affine surfaces emerge in three-body wear. However, so far, the studies were mostly limited to adhesive wear processes where the two surfaces in contact are composed of the same material. Here, we propose to study the transition from adhesive to abrasive wear by introducing a contrast of hardness between the contacting surfaces. Two wear processes emerge: one by gradual accretion of the third body by detachment of chips from both surfaces and the other being a more erratic mixed process involving large deformation of the third body and removal of large pieces from the soft surface. The critical length scale was found to be a good predictor of the ductile to brittle transition between both processes. Furthermore, the wear coefficients and wear ratios of soft and hard surfaces were found to be consistent with experimental observations. The wear particle is composed of many concentric layers, an onion-like structure, resulting from the gradual accretion of matter from both surfaces. The distribution of sizes of these layers was studied, and it appears that the cumulative distribution of hard surface's chip sizes follows a power law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.