Abstract

A rise of academic capitalism over the past four decades has been well documented within many research-intensive universities. Largely missing, however, are in-depth studies of how particularly situated academic groups manage the uncertainties that come with intermittent and fickle commercial funding streams in their daily research practice and problem choice. To capture the strategies scientists adopt under these conditions, this article provides an ethnographically detailed (and true) story about how a single project in Artificial Intelligence grew over several years from a peripheral idea to the very center of an academic lab’s commercial portfolio. The analysis theorizes an epistemic form—nimble knowledge production—and documents three of its lab-level features: 1) rapid prototyping to keep sunk costs low, 2) shared search for “real world problems” rather than “theoretical” ones, and 3) nimble commitment to research problem choice. While similar forms of academic knowledge transfer have been lauded as “mode 2,” “innovative,” or “hybrid” for initiating cross-institutional collaboration and pushing science beyond disciplinary silos, this case suggests it can rely on fleeting attention to problems resistant to a quick fix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.